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We investigate the dynamics of a bimolecular reaction on conically intersecting potential energy surfaces.
The flux operator method of calculating the state-specific total reaction probability is extended to a coupled-
surface problem, both in the diabatic and adiabatic electronic representations. The reaction probabilities are
calculated from their expectation values with the aid of a time-dependent wave packet (WP) approach. The
initial WP is prepared in an adiabatic electronic state, and it is propagated in a suitable diabatic electronic
representation. The initial state-specific and energy-resolved reaction probability is given in analytical forms
in both the adiabatic and diabatic picture. The diagonal correction (Born-Huang term) to the uncoupled
adiabatic (Born-Oppenheimer) Hamiltonian is discussed. The above formalism is applied to the H+ H2

exchange reaction on its conically intersecting double many-body expansion (DMBE) potential energy surfaces.
We report the initial state-selected reaction probabilities for energies extending up to the onset of the three-
body dissociation of this system. We find only a minor impact of the conical intersection on the reactive
scattering dynamics of H+ H2. A closer inspection of the electronic population reveals a very small fraction
of the WP traversing the upper adiabatic sheet during the course of the reaction. The accuracy of the DMBE
potential energy surface is assessed by comparing with new ab initio data.

I. Introduction

Conical intersectionsof electronic potential energy surfaces
are a generic feature of polyatomic molecules.1-6 Such intersec-
tions lead to a breakdown of the Born-Oppenheimer ap-
proximation and initiate new mechanisms ensuing different
nonadiabatic couplings and highly complex nuclear dynamics.7

The consequences of conical intersection in the spectroscopy
of bound molecular systems are well understood (see, for
example, refs 2 and 4 and references therein). More recently,
their possible implications for molecular scattering systems have
also become a major issue. The effect of conical intersections
on the state-specific and the state-to-state reactive and nonre-
active scattering attributes was demonstrated with an extended
two coordinate quasi Jahn-Teller (JT) model.8 The effect of
nonadiabatic couplings has been realized on the dynamics of O
+ H2 (HD) insertion and abstraction reactions in a quasiclassical
trajectory study.9,10Whiteley et al.11 have performed a quantum
scattering study on the coupled electronic states Cl(2P) + HCl
reaction using a coupled channel reactive scattering method
based on hyperspherical coordinates. The product energy
distributions in the photodissociation of triatomic molecules,
for example O3 and H2S, on their conically intersecting potential
energy surfaces have also been studied.12,13Quantum scattering
calculations using coupled potential energy surfaces are gener-
ally cumbersome and difficult to perform.

In the present article we aim to investigate the effects of
conical intersections on the reaction probability of a bimolecular

collision process. A time-dependent wave packet (WP) method
is extended to the (E × ε)-JT conical intersection for this
purpose. The initial wave packet is prepared in an adiabatic
electronic state, thus reflecting the experimental conditions. To
avoid the numerical instabilities arising from the diverging
nature of the nonadiabatic couplings in this representation14 the
WP is propagated in a suitablediabatic electronic representa-
tion.15 The initial state-specific total reaction probabilities are
calculated by representing the flux operator both in the adiabatic
as well as in the diabatic electronic representation. This enables
us to establish a connection between the results obtained in the
two representations. As far as we are aware this is for the first
time such an analysis has been performed in a reactive scattering
study.

We apply the above formalism to the H+ H2 exchange
reaction on its conically intersecting double many-body expan-
sion (DMBE) potential energy surfaces.16 The prototypical
hydrogen exchange reaction

is one of the cornerstones in our understanding of the micro-
scopic details of the reactive scattering dynamics. The ground
electronic state of H3 is orbitally degenerate at theD3h symmetry
configuration. In 1968 Porter et al.17 established that the two
sheets of its ground electronic potential energy surface (PES)
exhibit a conical intersection at the point of degeneracy. They
established the resemblance of this system to other (E × ε)-JT
active systems.18 Many improved and high-quality ab initio PESs
for the lower adiabatic sheet of its ground electronic manifold
appeared in the literature.16,19,20However, to date, the DMBE
PES16 is the only PES available for this system which globally
represents both the lower and the upper adiabatic sheets of the
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ground electronic manifold of H3 and offers a possibility to study
theoretically the nonadiabatic effects associated with the conical
intersection on its nuclear dynamics.

The effects of this conical intersection on the reactive
scattering dynamics of (R1) and its isotopic variants were studied
quantum mechanically for the first time by Kuppermann and
co-workers.21 They performed calculations with the lower
adiabatic sheet of the PES incorporating these effects in terms
of the geometric phase (GP) change of the wave function when
encircling the conical intersection in a closed path, without
explicitly considering both sheets of the PES and the nonadia-
batic couplings between them. They have shown that the
differential cross sections for the H+ D2(V ) 0) exchange
reaction at a collision energy of 1.29 eV agree well with the
experimental results when the GP change is taken into consid-
eration.22 In a later study Schnieder et al. have reproduced the
fully state-resolved measurements of ultrahigh resolution without
taking the GP effects into consideration.23 In view of the fact
that the minimum of the seam of the conical intersections in
this system occurs at an energy of∼2.74 eV,16 it is not clear
whether any noticeable effects of GP change can be seen on its
reactive scattering dynamics much below this energy. Further-
more, the GP effects are intricately dependent on the topology
of the PES and any small disturbances in the latter can cause a
noticeable change in the differential cross sections. Recently
Kendrick has performed very accurate scattering calculations
quantum mechanically and found no noticeable GP effects on
the dynamics of this reaction.24

While the GP effects at an energy much below that of the
minimum of the seam of conical intersections on the reactive
scattering dynamics of (R1) are a debatable issue, they were
shown to have only negligible influence on the transition state
resonances of H3 (originating from the saddle point region of
the PES at the collinear arrangements of the three nuclei).25

Furthermore, coupled surface studies explicitly considering the
nonadiabatic couplings also did not reveal any effect on these
resonances.26 Due to the fact that the conical intersections occur
at the D3h equilibrium geometry of H3, the saddle point
resonances are not affected by the strong nonadiabatic effects.
The direct evidence of the strong nonadiabatic effects emerged
from the neutralized ion-beam experiment of Bruckmeier et al.27

which probed H3 in the vicinity of the intersection seam of the
1E′ electronic manifold. In later theoretical studies Mahapatra
and Köppel28 have unambiguously established the importance
of the nonadiabatic coupling in this simple polyatomic system
complementing the experimental results of Bruckmeier et al.27

Despite the aforementioned works on this system a study of
the reactive scattering dynamics of (R1) employing two interact-
ing electronic states is still missing. In the present work we
apply the formalism mentioned above to fill this gap. The
reaction probabilities are reported for energies up to the onset
of the three-body dissociation of H3. Our results indicateno
noticeable effectsof the conical intersection on the state-specific
dynamics of this system. As a matter of fact, the coupled-state
results can essentially be reproduced by an uncoupled surface
calculation, especially when including the diagonal (or Born-
Huang) correction to the BO Hamiltonian. We find that a very
small fraction of the WP traverses the conical intersection during
the course of the reaction. These findings extend the recent
studies on this system by going to higher energies and
incorporating GP effects and the nonadiabatic couplings in a
coherent fashion.

The rest of the paper is organized in the following way. In
section II we present the theory describing the Hamiltonian and

the flux operator and the reaction probability both in the diabatic
as well as in the adiabatic electronic representations. The
diagonal correction to the BO adiabatic Hamiltonian is also
discussed. In section III we give some computational details of
the reaction probability. In section IV we present the numerical
results obtained on the H+ H2 exchange reaction and briefly
discuss them. Finally the paper is closed with a succinct
summary in section V.

II. Theory

In this section we describe the formalism to calculate the
reaction probability on a coupled electronic manifold. The
reaction probability is obtained in the usual way from the
expectation value of the flux operator on the basis of the energy-
normalized time-independent reactive scattering wave
function.29-33 In the following we describe the theory using the
H + H2 exchange reaction as a reference. The reactive scattering
of H + H2 occurs on the repulsive lower adiabatic sheet of its
ground electronic manifold. We prepare the initial wave packet
pertinent to the reagents in the asymptotic reactant channel of
this sheet (as is the case in all previous studies). To propagate
this WP in time we resort to a diabatic electronic representa-
tion.15 The diVergent nature of the nonadiabatic couplings
appearing in the adiabatic electronic representation at the point
of degeneracy of the two surfaces is avoided in a diabatic
representation.2 Finally the reaction probability can be calculated
in either way by representing the flux operator in the diabatic
or in the adiabatic electronic basis.

A. Diabatic Electronic Representation.1. Hamiltonian.The
diabatic Hamiltonian for the ground (1E′) electronic manifold
of the H + H2 system can be written as

whereH Nu andH el are the nuclear and the electronic parts
of the Hamiltonian matrix.TN represents the nuclear kinetic
energy operator andU11 and U22 are the energies of the two
diabatic electronic states coupled by the potential matrix
elementsU12 ) U21. TN, in the mass-scaled reactant channel
body-fixed Jacobi coordinates (R, r, γ) and for the total angular
momentumJ ) 0 is given by34

HerePR andPr are the momentum operators corresponding to
the two Jacobi distancesR (distance of H from the center-of-
mass of H2) andr (scaled H2 internuclear distance), respectively.
j is the H2 rotational angular momentum operator associated
with the Jacobi angleγ (angle betweenRB andrb). The quantity
µ, µ ) mH/31/2 (mH is the mass of the H nuclei), is the three-
body uniform (for both channelsR andr) reduced mass, andI,
I ) µR2r2/(R2 + r2), is the three-body moment of inertia. The
body-fixedz axis is defined to be parallel toRB and H2 lies in
the (x, z) plane.

The elements of the diabatic electronic Hamiltonian matrix
in eq 1 are obtained by diabatizing the (diagonal) adiabatic
electronic Hamiltonian matrix through the following similarity
transformation:

H d ) H Nu + H el

) TN(1 0
0 1) + (U11 U12

U21 U22
) (1)

TN ) 1
2µ

[PR
2 + Pr

2] + j2

2I

) -p2

2µ[ ∂
2

∂R2
+ ∂

2

∂r2] - p2

2I
1

sin γ
∂

∂γ(sin γ ∂

∂γ) (2)
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with (R ) ø/2)

Here1 is a 2× 2 unit matrix andS is the unitary transformation
matrix from the adiabatic to the diabatic representation,Ψd )
SΨad; R is the adiabatic-diabatic mixing angle. The quantities
V- andV+ are the potential energies of the lower and the upper
adiabatic sheets of the DMBE PES of H3,16 respectively. The
angleø, ø ) 2R, is identified with the pseudorotation angle,
defined as the direction of theε-type displacement in its two-
dimensional vibrational subspace of theD3h point group.16,35,36

This method of diabatization was tested numerically with a
second-order model (E × ε)-JT Hamiltonian by Thiel and
Köppel.36 It was shown that with this scheme of diabatization
the singular derivative coupling terms are eliminated and the
matrix elements of the residual derivative couplings become
vanishingly small.36 We also applied this scheme successfully
in our earlier investigations on the Rydberg emission spectrum
of H3.28,35 A similar line of work has been followed by
Yarkony.37

2. Flux Operator and Reaction Probability.The flux operator
F̂ is defined in terms of a dividing surfaceΘ which is a function
of a suitable coordinate that separates the products from the
reactants38

In the present case an obvious choice forΘ is given by

whereh is a heaviside step function which equals unity for
positive argument and zero otherwise.rd is to be chosen far
out in the product channel to ensure the asymptotic motion for
all r g rd. SinceΘ depends only on coordinates, the electronic
part of H d commutes with it; therefore eq 5 becomes

In a diabatic representation the kinetic energy operatorTN is
diagonal (eq 1); therefore, the flux operator possesses the same
property in this representation. Its nonzero diagonal elements
are given by

The reaction probability is the expectation value of the above
flux operator in the basis of the energy normalized time-
independent reactive scattering wave function evaluated atr )
rd. We write this wave function in the diabatic basis as

whereφ1
d andφ2

d correspond to the wave function components
on the diabatic states 1 and 2, respectively. For an initial state

i (corresponding to a specific vibrationalV and rotationalj state
of the reagent H2) the energy resolved reaction probability is
given by

whereSfi
R is the reactive scattering matrix from an initial state

(i) of the reactant to a final state (f) of the product. In terms of
the component diabatic wave functions the above equation can
be written as

The quantity in the right-hand side of the above equation is
integrated over the entire range ofR and γ. The energy
normalized time-independent reactive scattering wave function
is calculated along the dividing surface atr ) rd as

The function|ψk
d(R,rd,γ,E)〉 is obtained by Fourier transforming

the time-evolved wave packet|ψk
d(R,r,γ,t)〉 along the dividing

surface

The quantityκE in eq 12 is the weight of the translational
componentF(R) (see eq 29) contained in the initial wave packet
for a given total energyE

where k ) x2µ(E-εVj)/p, with εVj being the initial rovibra-
tional energy of the H2 molecule.

B. Adiabatic Electronic Representation.1. Hamiltonian.
In the adiabatic electronic representation the electronic part of
the Hamiltonian is diagonal and the nonadiabatic coupling
elements appear as off-diagonal elements in the nuclear part.
The adiabatic Hamiltonian matrix can be obtained from the
diabatic one of eq 1 through the following similarity transforma-
tion:

whereTN represents the nuclear kinetic energy operator given
in eq 2. The nonadiabatic coupling matrix is given by

The matrixΛ has a diagonal (e.g.Λ0) and an off-diagonal
(e.g.Λ′) part;Λ is set to zero in the usual Born-Oppenheimer
picture. However, when its diagonal elements are retained, one
arrives at the Born-Huang Hamiltonian.40 Using the diabatic
Hamiltonian matrix of eq 1 and the rotation matrixS of eq 4,
after some rigorous algebra the following adiabatic Hamiltonian
is obtained:

(U11 U12

U21 U22
) ) S(V- 0

0 V+
)S†

)
V+ + V-

2
1 +

V+ - V-

2 (-cosø sin ø
sin ø cox ø ) (3)

S ) (cosR sin R
-sin R cosR ) (4)

F̂ ) i
p
[H d, Θ] (5)

Θ ) h(r - rd) (6)

F̂ ) i
p
[TN, Θ] (7)

f̂11 ) f̂22 ) -ip
2µ [ ∂

∂r
δ(r - rd) + δ(r - rd)

∂

∂r] (8)

|Φd(R,rd,γ,E)〉 ) (|φ1
d(R,rd,γ,E)〉

|φ2
d(R,rd,γ,E)〉 ) (9)

Pi
R(E) ) ∑

f

|Sfi
R|2 ) 〈Φd(R,rd,γ,E)|F̂|Φd(R,rd,γ,E)〉 (10)

Pi
R(E) ) ∑

k)1

2

〈φk
d(R,rd,γ,E)| f̂kk|φk

d(R,rd,γ,E)〉

)
p

µ
∑
k)1

2

Im[〈φk
d(R,rd,γ,E)| ∂φk

d(R,rd,γ,E)

∂r
〉]|r)rd

(11)

|φk
d(R,rd,γ,E)〉 ) |ψk

d(R,rd,γ,E)〉/κE (12)

|ψk
d(R,rd,γ,E)〉 ) 1

x2π
∫-∞

+∞
eiEt/p|ψk

d(R,r,γ,t)〉 dt|r)rd (13)

κE ) ( µ
2πpk)1/2∫-∞

+∞
F(R)eikRdR (14)

H ad ) S†H dS

) TN1 + S†[TN,S] + (V- 0
0 V+

) (15)

Λ ) -S†[TN,S] (16)

The H + H2 Exchange Reaction J. Phys. Chem. A, Vol. 105, No. 11, 20012323



where R′x ) ∂R/∂x and R′′x ) ∂2R/∂x2. The third term in the
right-hand side of eq 17 corresponds to the Born-Huang term
Λ0.

The adiabatic-diabatic mixing angleR is a “complicated”
function of the Jacobi coordinates, and an evaluation ofΛ in
these coordinates is cumbersome. This can be better ac-
complished in the (E × ε)-JT coordinatesFJT andø. The latter
are identified as the radius of the JT displacement and the
pseudorotation angle (introduced in section II.A.1), respectively.
These coordinates can be expressed in terms of the Cartesian
normal coordinates (dimensionless) of theε-type vibration (Qx

andQy) of the D3h point group as

In these coordinates the BH term is given by36,41

whereωε is the frequency of the degenerate vibration andR̃ )
2R. Within the linear coupling schemeR̃ ) ø (eq 3) and does
not depend onFJT, and therefore, eq 19 is given by

In terms of the mass-weighted coordinateqJT to be used below,
eq 20 reads

We mention that the BH term of interest here is only the term
diverging at the conical intersection. Within the general
framework of the “adiabatic correction” as analyzed, e.g. by
Kutzelnigg in ref 42, this is given by part c of his eq 21.

2. Flux Operator and Reaction Probability.We require an
expression for the flux operator in the adiabatic electronic basis
to calculate the reaction probability in this basis for the present
two-state problem. Since in the definition of the flux operator,
Θ, depends only on the reaction coordinate (herer), only the
r-dependent part of the nuclear kinetic energy operator is of
relevance in eq 7. It can be seen from eq 17 that the nuclear
kinetic energy operator is nondiagonal and itsr-dependent part
is given by

SinceTr
ad is nondiagonal the flux operator will have the same

property in the adiabatic electronic basis. On substitutingTr
ad

in eq 7, one arrives at the same expression as in eq 8 for the
diagonal elements (f̂11 and f̂22) of the flux operator in the

adiabatic basis, and its off-diagonal elements are given by

We define the energy normalized time-independent reactive
scattering wave function in the adiabatic electronic basis as

whereφ-
ad andφ+

ad represent the two components of this wave
function onV- andV+, respectively. The reaction probability
in the adiabatic electronic representation is then given by

The wave functionsφ-
ad and φ+

ad can be obtained in an
analogous way as described forφ1

d andφ2
d. SinceR′r is a real

quantity, the last two terms of eq 25 are complex conjugate to
each other and thereforePi

R(E) becomes

Contrary to the analogous expression (eq 11) in the diabatic
basis, the result (eq 26) contains also off-diagonal electronic
contributions. These are expected to play an important role when
both channels, corresponding toV- and V+ are open. If only
V- is open then only the first of the three terms on the right-
hand side of eq 26 contributes to the reaction probability. Even
in this case, however, both terms in the diabatic analogue of eq
11 may play a role, because adiabatic and diabatic surfaces need
not coincide asymptotically.12,13 This is just the case for H+
H2 to be presented below.

III. Computational Details

In this section we describe the calculation of reaction
probabilities by the scheme developed above. In the following
we proceed with the coupled surface calculations; the uncoupled
surface calculations trivially follow from them. The time-
dependent Schro¨dinger equation (TDSE) is solved numerically
in the diabatic electronic representation on a grid in the (R,r,γ)
space using the matrix Hamiltonian in eq 1. For an explicitly
time-independent Hamiltonian the solution reads

Here Ψd(R,r,γ,0) is the initial wave function pertinent to the

H ad ) TN(1 0
0 1) + (V- 0

0 V+
)+

[p2

2µ
(R′R

2 + R′r
2) + p2

2I
R′γ

2](1 0
0 1) + [p2

2µ (R′′R + 2R′R
∂

∂R
+ R′′r +

2R′r
∂

∂r) + p2

2I(R′′γ + 2R′γ
∂

∂γ
+ R′γ cot γ)](0 -1

1 0 ) (17)

FJTe
iø ) Qx + iQy (18)

Λ0(R̃) )
ωεp

8 [( ∂R̃
∂FJT

)2
+ 1

FJT
2 (∂R̃

∂ø)2] (19)

Λ0 )
ωεp

8FJT
2

(20)

Λ0 ) p2

8mHqJT
2

(21)

Tr
ad ) -p2

2µ ( ∂
2

∂r2
- R′r

2 (R′′r + 2R′r
∂

∂r)
-(R′′r + 2R′r

∂

r ) ∂
2

∂r2
- R′r

2 ) (22)

f̂12 ) - f̂21 )
-ipR′r

µ
δ(r - rd) (23)

|Φad(R,rd,γ,E)〉 ) (|φ-
ad(R,rd,γ,E)〉

|φ+
ad(R,rd,γ,E)〉 ) (24)

Pi
R(E) ) 〈Φad(R,rd,γ,E)|F̂|Φad(R,rd,γ,E)〉

) p
µ[Im〈φ-

ad(R,rd,γ,E)|∂φ-
ad(R,rd,γ,E)

∂r 〉 +

Im〈φ+
ad(R,rd,γ,E)|∂φ+

ad(R,rd,γ,E)

∂r 〉 +

Im〈φ-
ad(R,rd,γ,E)|R′r |φ+

ad(R,rd,γ,E)〉 -

Im〈φ+
ad(R,rd,γ,E)|R′r|φ-

ad(R,rd,γ,E)〉] (25)

Pi
R(E) ) p

µ[Im〈φ-
ad(R,rd,γ,E)|∂φ-

ad(R,rd,γ,E)

∂r 〉 +

Im〈φ+
ad(R,rd,γ,E)|φ+

ad(R,rd,γ,E)

∂r 〉 +

2Im〈φ-
ad(R,rd,γ,E)|R′r|φ+

ad(R,rd,γ,E)〉] (26)

Ψd(R,r,γ,t) ) exp[-iH dt
p ]Ψd(R,r,γ,0) (27)
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reactants in the diabatic electronic representation andΨd(R,r,γ,t)
is the wave function at timet.

In a reactive scattering study the initial wave function is
prepared in the asymptotic reactant channel where the interaction
potential almost vanishes. In such a situation the initial wave
function pertinent to the H+ H2 reacting system can be written
as a product of the translational wave functionF(R) for the
motion alongR and the rovibrational wave functionΦVj(r) of
the H2 molecule. We locate the wave function initially on the
repulsive lower adiabatic sheet (V-) of the DMBE PES. In the
present case for,J ) 0, it is given by

We choose a minimum uncertainty Gaussian wave packet
(GWP) for F(R):

The quantityδ is the width parameter of the GWP, andR0 and
k0 correspond to the location of its maximum in the coordinate
and momentum space, respectively. The functionsΦVj(r) along
with the normalized Legendre polynomials (Pj(cosγ)) represents
the rovibrational eigenfunction corresponding to a (V,j) state of
the H2 molecule. The functionΦVj(r) are obtained by solving
the eigenvalue equation of the free H2 molecule:

Hereµ′ is the reduced mass of the H2 molecule,εVj the energy
eigenvalue,r′ ) r (µ/µ′)1/2 the unscaled internuclear distance,
andV(r′) is the potential energy of the H2 molecule obtained
from the DMBE PES by settingR f ∞. We used the sine-
DVR approach of Colbert and Miller43 to solve the above
eigenvalue equation.

The initial wave function defined in eq 28 is transformed to
the diabatic representation by using theS matrix (eq 4) prior to
its propagation. In the diabatic representation the initial wave
function can be written in the vector notation as

where (10) and (01) indicate the first and the second diabatic
electronic state with energyU11 andU22, respectively. Note that
these are different from the one introduced in eq 28.ψ1

d and
ψ2

d are the nuclear wave functions in the respective electronic
states depending on the set of Jacobi coordinates. To follow
the nuclear dynamics the TDSE (eq 27) is solved with the above
initial diabatic wave function. The exponential time evolution
operator in eq 27 is evaluated by dividing the time axis intoN
segments of length∆t. The exponential operator at each time
step is then approximated by the split-operator method,44

whereT(R,r) ) (PR
2 + Pr

2)/2µ is the total radial kinetic energy
operator.1 represents the 2× 2 unit matrix. The electronic

HamiltonianH el can be decomposed into

Since the diagonal and the off-diagonal parts ofH el do not
commute with each other, the propagator containing it in eq 32
is further written as

The exponent containing the off-diagonal matrix elements is
now expressed in terms of the 2× 2 Pauli matrix

Equation 32 is used in conjunction with the fast Fourier
transform method45 to evaluate the action of the exponential
containing the radial kinetic energy operator and the discrete
variable representation method46 to evaluate the exponential
containing the rotational kinetic energy operator (j2/2I) on the
wave function. The coordinate grid consists of equally spaced
pointsRl andrm along the Jacobi distancesRandr, respectively.
The grid along the Jacobi angleγ is chosen as the nodes of a
n-point Gauss-Legendre quadrature (GLQ).47 The initial adia-
batic wave function at each node (Rl,rm,γn) of this grid is given
by

wherewn is the weight of the GLQ associated with the grid
point n.

In dynamical studies involving scattering systems, as the WP
moves forward in time, its fast moving components approach
the grid boundaries and are no longer relevant for the rest of
the dynamics.29 Therefore, to avoid unphysical reflections or
wrap arounds of these components from the boundaries of a
finite sized grid, the WP at each time step is multiplied by a
damping function48

which is activated outside the dividing line (rd > 0) in the
product channel and also in the asymptotic reactant channel.
Xmask is the point at which the damping function is initiated,
and∆Xmask ()Xmax - Xmask) is the width ofX over which the
function decays from 1 to 0, withXmaxbeing the maximum value
of X in that direction, in a particular channel. The properties of
the initial WP and the grid parameters used for the numerical
calculations are listed in Table 1.

The time dependence of the adiabatic electronic populations
can be calculated either by using theS matrix (eq 4) or by
defining suitable adiabatic projection operators. TheS matrix
is a double-valued function of the coordinates and possesses a
branch point at the conical intersection. This problem is
circumvented by using adiabatic projectors in the diabatic

Ψad(R,r,γ,0) ) F(R)ΦVj(r)x2j + 1
2

Pj(cosγ)(10) (28)

F(R) ) ( 1

2πδ2)1/4

exp[-
(R - R0)

2

4δ2
- ik0(R - R0)] (29)

[- p2

2µ′
d2

dr′2
+ V(r′) +

j(j + 1)p2

2µ′r′2 ]ΦVj(r′) ) εVjΦVj(r′) (30)

Ψd(R,r,γ,0) ) ψ1
d(R,r,γ,0)(10)+ ψ2

d(R,r,γ,0)(01) (31)

exp[-iH d∆t
p ] ) exp[-iH el∆t

2p ] exp[ -ij2∆t
4Ip

1] ×

exp[-iT(R,r)∆t
p

1][-ij2∆t
4Ip

1] exp[-iH el∆t
2p ] + O[(∆t)3]

(32)

H el ) (U11 0
0 U22

)+ U12(0 1
1 0) (33)

e-iH el∆t/2p )

e-i(U11 0
0 U22

)∆t/4p

e-iU12(0 1
1 0)∆t/2p

e-i(U11 0
0 U22

)∆t/4p

(34)

e-iU12(0 1
1 0)∆t/2p )

(cos(U12∆t/2p) -i sin(U12∆t/2p)
-i sin (U12∆t/2p) cos(U12∆t/2p) ) (35)

Ψad(Rl,rm,γn,0) )

xwnF(Rl)ΦVj(rm)x2j + 1
2

Pj(cosγn)(10) (36)

f(Xi) ) sin[π
2

(Xmask+ ∆Xmask- Xi)

∆Xmask
] Xi g Xmask (37)
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electronic representation2,49

where - refers to the lower and the upper adiabatic sheet,
respectively.∆ is half of the energy gap between the two
diabatic surfaces. The expectation values of the above projectors
define the electronic populations in the respective electronic
states.

IV. Results and Discussion

In this section we apply the general formalism of section II
to calculate the initial state-specific and energy resolved reaction
probabilities of (R1). The reaction probabilities are calculated
across a dividing surface located atrd ) 4.1a0 at an energy
interval of 9 × 10-3 eV. The convergence of the results is
checked with respect to the numerical grid parameters given in
Table 1.

The total reaction probability (summed over all open vibra-
tional (V′) and rotational (j′) states of the product H2 at a given
energy) of (R1), for reactant H2 (V ) 0, j ) 0) as a function of
the total energyE is plotted in Figure 1. The coupled-surface
results are shown by the solid line. The uncoupled (lower
adiabatic) surface results without and with the diagonal cor-
rection are shown by the short- and long-dashed lines, respec-
tively. The initial WP is prepared on the lower adiabatic sheet
as is the case in all previous studies of this system. The energy
distribution of the initial translational GWP is shown in the inset.
It can be seen that the translational components of the initial
WP cover a broad range of energies from the onset of the
reaction threshold atE ) 0.55 eV to the three-body dissociation
limit at E ) 4.74 eV. Therefore, the reaction probabilities in
that range of energies can be reliably obtained with this WP.
The coupled-surface results are obtained by analyzing the
reactive flux in the adiabatic picture through eq 26. We find
that only the first term of eq 26 contributes to the reaction
probability, which is further discussed below. The resonance
structures and their energetic locations are same in the coupled
and uncoupled surface results. The difference between the
coupled and uncoupled surface (without the diagonal correction)
results is 2-3% at low energies. At high energies this difference

increases only slightly. The minimum of the seam of conical
intersections of H3 occurs at∼2.74 eV.16 Therefore, the coupled-
surface results are expected to differ more from the uncoupled
ones beyond this energy. However, it can be seen from Figure
1 that the impact of the conical intersection on the H2(V ) 0, j
) 0) reaction probabilities is negligibly small. The small
deviations become even smaller when including the diagonal
correction.

The same reaction probability calculated in the diabatic
electronic picture through eq 11 is shown in Figure 2. The
probability values shown by the short- and long-dashed lines
are obtained by analyzing the reactive flux on the two
component diabatic electronic statesU11 andU22, respectively
(represented by the first and the second term of eq 11). The
sum of these two components is indicated by the crosses and is
superimposed on the coupled surface results (solid line) of
Figure 1, obtained in the adiabatic electronic picture from the
first term of eq 26. For clarity of presentation we show the
crosses on a coarse grid of energy values. It is clear from Figure
2 that the second and the third terms of eq 26 do not contribute
to the reaction probability of H+ H2(V ) 0, j ) 0) in the energy
range of the present investigations. This is because on the upper
adiabatic surface product H2 is asymptotically prepared in its

TABLE 1: Numerical Grid Parameters and Properties of
the Initial Wave function Used in the Calculations of
Reaction Probabilities

param value description

NR/Nr/Nγ 128/64/48 no. of grid points
Rmin/Rmax (a0) 0.10/15.34 extension of the grid alongR
rmin/rmax (a0) 0.50/8.06 extension of the grid alongr
∆R ) ∆r (a0) 0.12 grid spacings along R andr
r I (a0) 4.1 location of the dividing surface in the

product channel
Rmask/rmask(a0) 11.74/4.70 starting point of the masking function
R0 (a0) 10.5 initial location of the center of the GWP

in the coordinate space
κ0 (au) 12.48 initial location of the center of the GWP

in the momentum space
δ (a0) 0.16 initial width param of the GWP
∆t (fs) 0.1347 length of the time step used in the WP

propagation
T (fs) 413.76 tot. propagation time

P-
ad ) S(1 0

0 0)S†

) 1
2

- 1

2(∆2 + U12
2)1/2(-∆ U12

U12 ∆ )
P+

ad ) 1 - P-
ad (38)

Figure 1. Total reaction probability as a function of the total energy
E (H, H2 translational+ H2 rovibrational) for the H+ H2(V ) 0, j )
0) f H2(ΣV′, Σj′) + H exchange reaction on the DMBE PES in three-
dimensions and for total angular momentumJ ) 0. The energyE is
measured from the minimum of the H2 potential. The coupled-surface
results (obtained by analyzing the reactive flux in the adiabatic
electronic picture, eq 26) are shown by the solid line. The uncoupled
surface results with and without the diagonal BH correction are shown
by the long- and short-dashed lines, respectively. The energy distribution
of the initial translational GWP is shown in the inset.

Figure 2. Same as in Figure 1, obtained by analyzing the reactive
flux in the diabatic electronic picture, eq 11. The reaction probability
curves obtained on the diabatic electronic statesU11 andU22 are shown
by the short- and long-dashed lines, respectively. The sum of the two
diabatic probabilities is superimposed on the adiabatic coupled-surface
results (solid line) of Figure 1 on a coarse energy grid and is indicated
by crosses.
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3Σu state which has its minimum atE ∼ 4.74 eV,16 at the onset
of the three-body dissociation. Therefore, in the present
investigations this channel remains energetically closed and does
not contribute to the reaction probability. This is numerically
checked further from the reaction probabilities obtained from
the second term of eq 26. They are all zero until the fourth
decimal place which shows that the second and the third terms
are zero individually, not just their sum. Despite a difference
in the magnitude of the reaction probabilities, the two component
diabatic probability curves exhibit similar resonance structures.

To better understand the similarity between the coupled and
the uncoupled surface results we show the time evolution of
the electronic populations in Figure 3. The initial WP corre-
sponds to H2(V ) 0, j ) 0) and is again prepared in the
asymptotic reactant channel of the lower adiabatic sheet. (It is
transformed to the diabatic representation using theS matrix
of eq 4 prior to propagation). As can be seen from Figure 3,
we obtain a 0.71/0.29 population of the two component diabatic
electronic states (shown by the dashed and solid lines) att ) 0.
Therefore, the diabatic potentials do not approach the asymptotic
adiabatic states of H+ H2 but represent a mixture of them. A
similar kind of behavior of the diabatic electronic states has
been found, e.g., for the ozone12 and hydrogen disulfide
molecules.13 This may be a surprising feature of the diabatization
procedure but, in practice, is often unavoidable. However, since
the adiabatic states are well separated asymptotically, preparing
an initial WP on the adiabatic electronic state and propagating
it in the diabatic electronic representation and finally transform-
ing it back to the adiabatic states before analysis is expected to
have only little relevance of this “artifact” on the dynamics.
The coincidence of the reaction probabilities obtained in the
diabatic and the adiabatic picture (see Figure 2) also adds an
evidence to this remark. The population of the upper adiabatic
electronic state is shown in the inset of Figure 3. The population
of this state reaches a maximum value of∼6.25× 10-3 after
∼15 fs. Therefore, only∼0.625% of the WP traverses to the
upper adiabatic cone during the course of the entire dynamics.
This can hardly have any major impact on the dynamics. The
minimum energy path for the H+ H2 reactive scattering process
occurs at the collinear arrangement of the three nuclei which is
far away from the seam of conical intersections, occurring at
the D3h arrangements of the three nuclei. The classical barrier
height of the collinear saddle point on the lower adiabatic sheet
is ∼0.42 eV, whereas the minimum of the seam of conical
intersections occurs at∼2.74 eV at the equilateral triangular

geometry.16 Apparently also for higher energies a major part
of the reactive flux is directed via the low-energy transition state
conformation. A similar numerical observation has been made
earlier in a bound-state calculation of electronically excited states
of SO2.50

In Figure 4 we show the reaction probabilities obtained with
the vibrationally excited reactant (a) H2(V ) 1, j ) 0) and (b)
H2(V ) 2, j ) 0). The coupled and the uncoupled (without the
diagonal correction) surface results are shown in each panel by
the full and the dashed lines, respectively. The coupled-surface
results are obtained by analyzing the reactive flux in the
adiabatic electronic picture. The probability curves obtained by
using the diabatic electronic basis are also included in the figures
and are shown by the dot-dashed lines. Again, the sum of the
reaction probabilities obtained in the diabatic picture equals
those obtained in the adiabatic picture. For the coupled surface
results of the adiabatic picture only contributions from the first
term of eq 26 are shown; the contributions from the second
and third terms are found to be almost zero. In the right-hand
side of each panel the corresponding electronic populations of
the upper adiabatic sheet are plotted as a function of the
propagation time. As in case of H2(V ) 0, j ) 0), the difference
between the coupled and the uncoupled-surface results for
vibrationally excited H2 is very small. The resonance structures
and their energetic locations are also the same in the coupled
and the uncoupled surface results. A closer inspection of the
electronic populations in Figure 4 reveals that for vibrationally
excited H2 a larger fraction of the WP traverses to the upper
adiabatic sheet during the reaction. For instance,∼1% and
∼1.6% of the WP traverse to the upper cone during the reaction
for V ) 1 and V ) 2, respectively. Also, the population
maximum occurs at a slightly later propagation time on
vibrational excitation.

To assess the accuracy of the DMBE PES, which relies on
the analytic continuation approach for the upper adiabatic sheet,
additional ab initio calculations were performed. They aim to
globally represent both the adiabatic sheets of the ground
electronic manifold of H3 and the associated nonadiabatic
coupling elements between them. These calculations are similar
to those reported by Varandas et al.16 in their extension of the
Liu-Siegbahn19 full configuration interaction (CI) treatment of
H3. The adiabatic wave functions and derivative couplings were

Figure 3. Electronic population dynamics for the H+ H2(V ) 0, j )
0) f H2(ΣV′, Σ j′) + H exchange reaction. The populations of the two
component diabatic electronic statesU11 and U22 are shown by the
dashed and solid lines, respectively. Because of the damping function
activated at the grid edge, the above populations approach to zero at
longer times. The population of the upper adiabatic electronic state
(V+) is shown in the inset.

Figure 4. Same as in Figure 1, for H+ H2(V, j ) 0) f H2(ΣV′, Σj′)
+ H reaction. Reaction probabilities forV ) 1 andV ) 2 are shown in
panels a and b, respectively. The solid and the dashed lines in each
panel indicate the adiabatic coupled-surface and uncoupled- (without
the diagonal correction) surface results, respectively. The results
obtained in the diabatic electronic picture are shown by the dot-dashed
lines in each panel. In the right-hand side of each panel the corre-
sponding electronic population of the upper adiabatic electronic state
is shown as a function of the propagation time.
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determined from second-order CI51 wave functions based on a
three electron, three orbital, active space. The molecular orbitals
were determined from a complete active space52 state-average
multiconfigurational self-consistent field procedure in which two
2A′ states were averaged with weights (0.505,0.495) based on
(6s3p1d) contracted Gaussian basis sets on the hydrogen. We
show only a few cuts of these new potential energy surfaces
for some relevant geometries of H3 which fit to the need of the
present purposes and compare them with similar cuts from the
DMBE PES. The full presentation of our new potential energy
surfaces and dynamical studies on them is beyond the scope of
the present paper and will be considered in a future publication.
In what follows we will use the principal axes of inertia
symmetrized hyperspherical coordinates (F,φ,θ) of Kuppermann
(see eqs 148-153 and164 in ref 53) in discussing the properties
of the potential energy surfaces. In this coordinate system,θ )
0° corresponds to the equilateral triangular configuration andθ
) 90° corresponds to the collinear configuration. This choice
is made because in our future dynamical studies we wish to
explore the advantage of using the hyperspherical coordinates
for a symmetric triatomic system.

In Figure 5 we plot the potential energy surfaces along the
hyperradiusF for fixed values ofθ ) 0.1° andφ )20°. The
finite value of θ has been chosen for technical reasons. It is
small enough that (irrespective ofφ) the cuts of Figure 5
represents theD3h conformations, withF being 31/4 (for H3) times
the side length of the equilateral triangle. Note thatV- ) V+
for these (and only these) geometries so that Figure 5 represent
the potential energies along the seam of conical intersections.
The close similarity between the new ab initio results (full line)
and the DMBE surface (dashed line) is satisfying but not quite
unexpected because the analytic continuation technique should
be accurate nearD3h geometries.

More significant are comparisons for non-D3h conformations
as underlying Figure 6. In panel a we report results alongφ for
θ ) 90° (collinear arrangement of nuclei), and in panel b are
results forθ ) 0° (D3h) - 90° (collinear) forφ ) 30°. Despite
the large energetic splitting betweenV+ andV- the agreement
between the new ab initio data and the DMBE surface16 is
remarkably good. We take this as an indication that the DMBE
surface is accurate enough so that at least the comparison
between coupled-surface and uncoupled-surface results of
Figures 1-4 should not be seriously affected. A numerical test
of the accuracy of the diabatization scheme adopted is certainly

also desirable and, in fact, planned by us for the near future. It
is, however, beyond the scope of the present article.

V. Summary and Outlook

The reactive scattering dynamics of bimolecular collision
processes occurring on a single PES is well studied in the
literature. In contrast to that, only in recent years effort is made
to understand the implications of nonadiabatic interactions in a
reactive scattering process. We have presented here a concise
description of the initial state-specific reactive scattering dynam-
ics on coupled electronic potential energy surfaces. We focused
on a (E × ε)-JT conical intersection and a time-dependent wave
packet method as regards the nuclear dynamics. Particularly we
described the analysis of the reactive flux of the WP in order
to calculate the initial state-specific and energy resolved total
reaction probability. The initial WP is prepared on an adiabatic
electronic state and is propagated in a suitable diabatic electronic
representation. One needs to resort to the latter representation
in order to avoid the diverging (at the seam of intersections of
the potential energy surfaces) nonadiabatic coupling elements
appearing in the adiabatic electronic basis. The final analysis
of the reactive flux is carried out both in the adiabatic and in
the diabatic electronic representations. While the representation
of the flux operator is diagonal in the diabatic electronic basis,
it contains off-diagonal elements (arising from the off-diagonal
kinetic coupling elements) in the adiabatic electronic basis.

The above formalism is applied to calculate the state-specific
and energy resolved total reaction probabilities of the H+ H2

exchange reaction on the DMBE PES. The reaction probabilities
obtained in the coupled-surface calculations differ only slightly
from those obtained from the single surface calculations. The
coupled-surface results at high energies can essentially be
reproduced by the single surface calculation including the
diagonal correction to the BO Hamiltonian. Especially, all
resonance structures and their energetic locations are found to
be similar in both the coupled- and uncoupled-surface results.
The sum of the reaction probabilities obtained in the diabatic
representation (eq 11) equals that obtained in the adiabatic
picture considering only the first term of eq 26. On the upper
adiabatic sheet, H2 is produced in its3Σu state and the energetic
minimum of this state occurs at the onset of the three-body
dissociation (∼4.74 eV). Therefore, in the energy range of the
present investigations the last two terms of eq 26 do not
contribute to the reaction probability. The resonance structures
and their energetic locations are found to be similar in both the
coupled and uncoupled surface results.

The minimum energy path for the reactive scattering pro-
cesses in H+ H2 occurs at the collinear arrangement of the

Figure 5. Cuts of the adiabatic potential energy surfaces of H3 as a
function of the hyperradiusF for θ ) 0.1° andφ ) 20° (nearly along
the seam of conical intersections occurring atθ ) 0°). The two adiabatic
potential energy surfacesV- are degenerate for this geometry. The new
ab initio results are shown by the solid line, and the potential energies
from the DMBE PES for the same geometry are indicated by the dashed
line. The minimum in the potential energy curve represents the
minimum of the seam of conical intersections occurring at 2.74 eV for
F ) 2.5a0 in both cases.

Figure 6. Cuts of the adiabatic potential energy surfaces of H3 (a)
alongφ (in degrees) forF ) 6.0a0 and θ ) 90° and (b) alongθ (in
degrees) forF ) 6.0a0 and φ ) 30°. θ ) 90° corresponds to the
collinear arrangement of the three nuclei. The solid and dashed lines
in each panel represent the potential energy valuesV- and V+,
respectively, from the DMBE PES. The new ab initio results are
superimposed on them and are indicated by the crosses.
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three nuclei, which is far away from the seam of conical
intersections occurring at theD3h configuration. Beyond the
minimum of the seam of conical intersections occurring at∼2.74
eV, the noncollinear collisions might be expected to make
significant contributions in the reactive scattering dynamics.
However, the region of the space covered by the configuration
of the three nuclei for which the two surfaces are nearly
degenerate is very small and any slight deviation form these
configurations leads to a significant energy splitting of the two
surfaces. We find only a very small fraction the WP (less than
2%) traversing the upper adiabatic cone during the course of
the reaction. Therefore, no dramatic effects of the conical
intersections on the reaction probability are unveiled by the
present investigations.

To assess the accuracy of the DMBE PES, we refer to new
ab initio calculations which have been carried out to globally
represent the two adiabatic sheet of the ground electronic
manifold of H3 and the associated nonadiabatic couplings
between them.54 We find these new data compare quite well to
the DMBE PES. This confirms the accuracy of the DMBE PES.
The presentation of the full surfaces and the dynamical results
based on them and on the ensuing nonadiabatic couplings will
be considered in a future publication.
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(41) Scho¨n, J.; Köppel, H.J. Chem. Phys. 1995, 103, 9292.
(42) Kutzelnigg, W.Mol. Phys. 1997, 90, 909.
(43) Colbert, D. T.; Miller, W. H.J. Chem. Phys. 1992, 96, 1982.
(44) Feit, M. D.; Fleck, J. A., Jr.; Steiger, A.J. Comput. Phys.1982,

47, 412.
(45) Kosloff, D.; Kosloff, R.J. Comput. Phys. 1983, 52, 35.
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