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We investigate the dynamics of a bimolecular reaction on conically intersecting potential energy surfaces.
The flux operator method of calculating the state-specific total reaction probability is extended to a coupled-
surface problem, both in the diabatic and adiabatic electronic representations. The reaction probabilities are
calculated from their expectation values with the aid of a time-dependent wave packet (WP) approach. The
initial WP is prepared in an adiabatic electronic state, and it is propagated in a suitable diabatic electronic
representation. The initial state-specific and energy-resolved reaction probability is given in analytical forms
in both the adiabatic and diabatic picture. The diagonal correction (Bduang term) to the uncoupled
adiabatic (Bora-Oppenheimer) Hamiltonian is discussed. The above formalism is applied to theHk
exchange reaction on its conically intersecting double many-body expansion (DMBE) potential energy surfaces.
We report the initial state-selected reaction probabilities for energies extending up to the onset of the three-
body dissociation of this system. We find only a minor impact of the conical intersection on the reactive
scattering dynamics of H H,. A closer inspection of the electronic population reveals a very small fraction

of the WP traversing the upper adiabatic sheet during the course of the reaction. The accuracy of the DMBE
potential energy surface is assessed by comparing with new ab initio data.

I. Introduction collision process. A time-dependent wave packet (WP) method
is extended to theH x ¢)-JT conical intersection for this
purpose. The initial wave packet is prepared in an adiabatic
tions lead to a breakdown of the Bor@ppenheimer ap- eleqtronlc state, thus r.eflectlln.g. the experlmental cond.mons.. To
avoid the numerical instabilities arising from the diverging

proximation and initiate new mechanisms ensuing different i fth diabati i i thi b
nonadiabatic couplings and highly complex nuclear dynarhics. hature or the nonadiabalic coupiings In this represen R
WP is propagated in a suitabiabatic electronic representa-

The consequences of conical intersection in the spectroscopyt. 15 The initial stat ific total i babilit
of bound molecular systems are well understood (see, for on. € initial state-specilic total reaction probabiiities are

example, refs 2 and 4 and references therein). More recently,calcmated by representing the flux operator both in the adiabatic

their possible implications for molecular scattering systems have as well as N the diabatic (_electronlc representation. Th_|s e”?b'es
also become a major issue. The effect of conical intersections YS to establish a connection between the results obtained in the

on the state-specific and the state-to-state reactive and nonrelWO representations. As far as we are aware this is for the first

active scattering attributes was demonstrated with an extended™e such an analysis has been performed in a reactive scattering

. . tudy.
two coordinate quasi JakiTeller (JT) modef The effect of S .
nonadiabatic couplings has been realized on the dynamics of O We apply the above formalism to the # H, exchange

+ H; (HD) insertion and abstraction reactions in a quasiclassical rgactlon on its conically intersecting double many-body expan-

trajectory study:1°Whiteley et all! have performed a quantum 5" (DMBE) potential energy surfacés.The prototypical
scattering study on the coupled electronic statedRGH- HCI hydrogen exchange reaction
reaction using a coupled channel reactive scattering method
based on hyperspherical coordinates. The product energy
distributions in the photodissociation of triatomic molecules, . . i .
for example @and HS, on their conically intersecting potential IS ©ne of the comerstones in our understanding of the micro-
energy surfaces have also been studédQuantum scattering ~ SCOPIC Qetalls of thg reactive scattering dynamics. The ground
calculations using coupled potential energy surfaces are gener-£l€ctronic state of kis orbitally degenerate at tfigy, symmetry
ally cumbersome and difficult to perform. conflguratl_on. In 1968 Porter_ et éﬂ.est_abllshed that the two

In the present article we aim to investigate the effects of sheets of its ground electronic potential energy surface (PES)

conical intersections on the reaction probability of a bimolecular €xnibit & conical intersection at the point of degeneracy. They
established the resemblance of this system to other €)-JT

T Part of the special issue “Aron Kuppermann Festschrift”. active system& Many improved and high-quality ab initio PESs
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Conical intersectionsf electronic potential energy surfaces
are a generic feature of polyatomic molecuiegsSuch intersec-

H+H,—H,+H (R1)
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ground electronic manifold of $and offers a possibility to study  the flux operator and the reaction probability both in the diabatic
theoretically the nonadiabatic effects associated with the conicalas well as in the adiabatic electronic representations. The
intersection on its nuclear dynamics. diagonal correction to the BO adiabatic Hamiltonian is also

The effects of this conical intersection on the reactive discussed. In section Il we give some computational details of
scattering dynamics of (R1) and its isotopic variants were studied the reaction probability. In section IV we present the numerical
quantum mechanica”y for the first time by Kuppermann and results obtained on the Ht H2 eXChange reaction and brlefly
co-workers®: They performed calculations with the lower discuss them. Finally the paper is closed with a succinct
adiabatic sheet of the PES incorporating these effects in termssummary in section V.
of the geometric phase (GP) change of the wave function when
encircling the conical intersection in a closed path, without !l Theory
explicitly considering both sheets of the PES and the nonadia- |n this section we describe the formalism to calculate the
batic couplings between them. They have shown that the reaction probability on a coupled electronic manifold. The
differential cross sections for the H D2(v = 0) exchange  reaction probability is obtained in the usual way from the
reaction at a collision energy of 1.29 eV agree well with the expectation value of the flux operator on the basis of the energy-
experimental results when the GP change is taken into consid-normalized time-independent reactive scattering wave
eration?? In a later study Schnieder et al. have reproduced the function2-33 In the following we describe the theory using the
fully state-resolved measurements of ultrahigh resolution without H + H, exchange reaction as a reference. The reactive scattering
taking the GP effects into considerati&hin view of the fact of H + H; occurs on the repulsive lower adiabatic sheet of its
that the minimum of the seam of the conical intersections in ground electronic manifold. We prepare the initial wave packet
this system occurs at an energy-e2.74 eV16 it is not clear pertinent to the reagents in the asymptotic reactant channel of
whether any noticeable effects of GP change can be seen on itshis sheet (as is the case in all previous studies). To propagate
reactive scattering dynamics much below this energy. Further- this WP in time we resort to a diabatic electronic representa-
more, the GP effects are intricately dependent on the topologytion1® The divergent nature of the nonadiabatic couplings
of the PES and any small disturbances in the latter can cause appearing in the adiabatic electronic representation at the point
noticeable change in the differential cross sections. Recently of degeneracy of the two surfaces is avoided in a diabatic
Kendrick has performed very accurate scattering calculations representatiod Finally the reaction probability can be calculated
quantum mechanically and found no noticeable GP effects onin either way by representing the flux operator in the diabatic
the dynamics of this reactiot. or in the adiabatic electronic basis.

While the GP effects at an energy much below that of the  A. Diabatic Electronic Representation.1. Hamiltonian.The
minimum of the seam of conical intersections on the reactive diabatic Hamiltonian for the ground ()Eelectronic manifold
scattering dynamics of (R1) are a debatable issue, they wereof the H+ Hz system can be written as
shown to have only negligible influence on the transition state

resonances of fH(originating from the saddle point region of Ho9%=HMW+H*®

the PES at the collinear arrangements of the three ni#€lei). 10 U.. U

Furthermore, coupled surface studies explicitly considering the = TN(O 1) + (Ull Ulz) (1)
21 22

nonadiabatic couplings also did not reveal any effect on these
resonance¥ Due to the fact that the conical intersections occur whereH N andH € are the nuclear and the electronic parts
at the Dg, equilibrium geometry of B the saddle point N . e
. . of the Hamiltonian matrix.Ty represents the nuclear kinetic
resonances are not affected by the strong nonadiabatic effects, .
. h - . energy operator antd1; and Uy, are the energies of the two
The direct evidence of the strong nonadiabatic effects emerged _. . - . .
. . . : diabatic electronic states coupled by the potential matrix
from the neutralized ion-beam experiment of Bruckmeier &t al. ~ ;
which probed H in the vicinity of the intersection seam of the elements);, = Ui T, in the mass-scaled reactant channel
1E electronic manifold. In later theoretical studies Mahapatra body-fixed Jacobi coordinateR,(r, y) and for the total angular

— 0is Qi 4
and KgpeP® have unambiguously established the importance momentumJ = 0 s given by

of the nonadiabatic coupling in this simple polyatomic system 1 2
complementing the experimental results of Bruckmeier &t al. Ty = Z[PR2+ PA + JZ_I
Despite the aforementioned works on this system a study of
the reactive scattering dynamics of (R1) employing two interact- I 5 I 1 9. o
ing electronic states is still missing. In the present work we T 2lar a_rz] - m(smyg) )

apply the formalism mentioned above to fill this gap. The

reaction probabilities are reported for energies up to the onsetHere P; and P, are the momentum operators corresponding to
of the three-body dissociation ofsHOur results indicateo the two Jacobi distanceR (distance of H from the center-of-
noticeable effectsf the conical intersection on the State-specific mass of H) andr (Sca|ed H internuclear distance)’ respectively_
dynamICS of this SYStem. As a matter of faCt, the COUp|Ed-Statej is the |—b rotational angu|ar momenlum operator associated
results can essentially be reproduced by an uncoupled surfaceyith the Jacobi angle (angle betweeiR andT). The quantity
calculation, especially when including the diagonal (or Bern  ;; ;; = my/3Y2 (my is the mass of the H nuclei), is the three-

Huang) correction to the BO Hamiltonian. We find that a very pody uniform (for both channeR andr) reduced mass, arld
small fraction of the WP traverses the conical intersection during | = ,R2r?/(R? + r?), is the three-body moment of inertia. The

the course of the reaction. These findings extend the recenthody-fixedz axis is defined to be parallel & and H lies in

studies on this system by going to higher energies and the , 2 plane.

incorporating GP effects and the nonadiabatic couplings in @  The elements of the diabatic electronic Hamiltonian matrix

coherent fashion. in eq 1 are obtained by diabatizing the (diagonal) adiabatic
The rest of the paper is organized in the following way. In electronic Hamiltonian matrix through the following similarity

section Il we present the theory describing the Hamiltonian and transformation:
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U, U;, Voo 0\t i (corresponding to a specific vibrationalnd rotationaj state
U, U, ~o V, S of the reagent b) the energy resolved reaction probability is
given by

V, +V_ V,—-V_[— i
_V 1++2 (cosx3|n;¢)(3)

2 singy  coxy PR(E) = Z|SnR|2=@"(R,rd,y,Enﬁ|<1>d(R,rd,y,E)D (10)

with (o0 = y/2)
_ whereSiR is the reactive scattering matrix from an initial state
_ [cosa sina @) (i) of the reactant to a final staté ©f the product. In terms of
—sina.  cosa the component diabatic wave functions the above equation can

Herelis a 2x 2 unit matrix andSis the unitary transformation be written as

matrix from the adiabatic to the diabatic representatiip = 2
SWa9 o is the adiabatie diabatic mixing angle. The quantites  pR(E) = Z@kd(RJd’VaE)|,fkk|¢kd(erd7‘va)D
k=

V_ andV; are the potential energies of the lower and the upper
2 @ g a¢kd(R1rd!V1E)
k RIgy.B)|—————— ) (11)
|r=r

angley, ¥ = 2a, is identified with the pseudorotation angle,

defined as the direction of thetype displacement in its two- =—>Im
dimensional vibrational subspace of the, point group!®.35:36 M=
This method of diabatization was tested numerically with a
second-order modelE( x ¢€)-JT Hamiltonian by Thiel and
Koppel3® It was shown that with this scheme of diabatization
the singular derivative coupling terms are eliminated and the
matrix elements of the residual derivative couplings become
vanishingly smalPé We also applied this scheme successfully I (R 4y E)YT= [, (R 4,y . E) Hice 12)
in our earlier investigations on the Rydberg emission spectrum

of H3?%3 A similar line of work has been followed by  The function|yd(Rrq,y,E)Cis obtained by Fourier transforming

Yarkony3’ _ - the time-evolved wave pack@pd(Rr,y,t)Calong the dividing
_ 2. Flux Operator and Reaction Probabilityhe flux operator surface

F is defined in terms of a dividing surfa€® which is a function

adiabatic sheets of the DMBE PES of,H respectively. The
ar

The quantity in the right-hand side of the above equation is
integrated over the entire range & and y. The energy
normalized time-independent reactive scattering wave function
is calculated along the dividing surfacerat rq as

of a suitable coordinate that separates the products from the d 1 p,+e Ewn,  d
E =i_[H d 0] (5) The quantityxg in eq 12 is thelweig.ht of .tr.u.a translational
h component(R) (see eq 29) contained in the initial wave packet

. . . for a given total ener
In the present case an obvious choice @is given by g oF

©=h(r —ry) (6) ke = (ﬁ)m [ F(RERR (14)

whereh is a heaviside step function which equals unity for \wherek = /2u(E—¢,)/h, with ¢, being the initial rovibra-
positive argument and zero otherwisg.is to be chosen far  tional energy of the glmolecule.

out in the product channel to ensure the asymptotic motion for g adiabatic Electronic Representation.1. Hamiltonian.
allr = rq. Since® depends only on coordinates, the electronic | the adiabatic electronic representation the electronic part of

part of H ¢ commutes with it; therefore eq 5 becomes the Hamiltonian is diagonal and the nonadiabatic coupling
L elements appear as off-diagonal elements in the nuclear part.

F= E[TN’ 0] (7 The adiabatic Hamiltonian matrix can be obtained from the

diabatic one of eq 1 through the following similarity transforma-

In a diabatic representation the kinetic energy operaids tion:

diagonal (eq 1); therefore, the flux operator possesses the same
property in this representation. Its nonzero diagonal elements
are given by

H *=3s'H ‘%

(15)

t Voo
=Ty1+ ST S] +

. 0 V.
2 2 —iA[ 0 d

f =f =—[—6r—r —i—c‘}r—r—] 8
ez uor ( J ( ) or ®) whereTy represents the nuclear kinetic energy operator given

The reaction probability is the expectation value of the above In eq 2. The nonadiabatic coupling matrix is given by

flux operator in the basis of the energy normalized time- A= _ST[T 9 (16)
independent reactive scattering wave function evaluated-at N
rq. We write this wave function in the diabatic basis as The matrixA has a diagonal (e.g\% and an off-diagonal
d (e.g.A’) part; A is set to zero in the usual BorOppenheimer
|<I>d(Rr v, E)= l$1(Rr gy, E) 9) picture. However, when its diagonal elements are retained, one
na 1p3(R4,7.E) arrives at the BorrHuang Hamiltoniart® Using the diabatic

Hamiltonian matrix of eq 1 and the rotation matxof eq 4,
whereg:9 andg,d correspond to the wave function components after some rigorous algebra the following adiabatic Hamiltonian
on the diabatic states 1 and 2, respectively. For an initial stateis obtained:
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ad 10 V_ 0 adiabatic basis, and its off-diagonal elements are given by
H “ =T, + +
01 0 Vi —iho
A o 2 B o1 0 R, ) " flzz _?21: O(r — ) (23)
oot e+ |l )+ 2u(OLRJr20LR8R+0Lr+ u
L0 R, L0 ) 0 -1 We define the energy normalized time-independent reactive
20‘@) + E(a,/ + 2ay$ ta, COW) 10 | @D scattering wave function in the adiabatic electronic basis as

where o, = da/ox and o) = 9?a/dx2. The third term in the
right-hand side of eq 17 corresponds to the Baduang term
A,

|¢_ad(R,rd,y,E)9
|¢+ad(R-rdaV'E)

f Th_e ad'?bﬁtlid'a%m'c mgqng anglen:j IS a “colmpl_|c';aktgg” whereg_29and¢ 2 represent the two components of this wave
unction of the Jacobi coordinates, and an evaluatior o function onV_ andV,, respectively. The reaction probability

these coordinates is cumbersome. This can be better ac- : : . L .
. . . in the adiabatic electronic representation is then given b
complished in theE x €)-JT coordinateg,r andy. The latter P g y

are identified as the radius of the JT displacement and the pRr
pseudorotation angle (introduced in section 11.A.1), respectively. "'
These coordinates can be expressed in terms of the Cartesian
normal coordinates (dimensionless) of theype vibration Q«

O™ (Rrg . E) = ( (24)

(E) = @*(Rr,,y.E)FI®*(Rr,y,E)0

andQ,) of the D3, point group as

o€ =Q +iQ, (18)
In these coordinates the BH term is giversbit
oA 95 \2 | 1 (382

A%E) = (—) +—(—) 19

ChE [ et (19)

wherew, is the frequency of the degenerate vibration éne
20.. Within the linear coupling schemie = y (eq 3) and does
not depend omyr, and therefore, eq 19 is given by

o wh

8PJT2

(20)

In terms of the mass-weighted coordinggeto be used below,
eq 20 reads
A= h*
8Myayr°

We mention that the BH term of interest here is only the term
diverging at the conical intersection. Within the general

(21)

-2l e e

Im@fd(R,rd,%E)‘wm

Im®_*Y(Rryy.B)log 16, (Rrgy,E) -

ImEbfd(Ryrd,%E)Ia;|¢_a"(R,rd,%E)E] (25)

The wave functionsp_2ad and ¢.24 can be obtained in an
analogous way as described i and ¢2°. Sincea. is a real
quantity, the last two terms of eq 25 are complex conjugate to
each other and therefogR(E) becomes

ad
PTE) = Z['m@_ad(md,y,a\wm

¢+ad(R1rd’VvE)
or D+

Im@Jrad(R,rd,y,E)

2|mm>a“(R,rd,y,E)|a;|¢ﬁ“(R,rd,y.E)E] (26)

Contrary to the analogous expression (eq 11) in the diabatic
basis, the result (eq 26) contains also off-diagonal electronic
contributions. These are expected to play an important role when
both channels, corresponding Yo. and V. are open. If only

framework of the “adiabatic correction” as analyzed, e.g. by y/ g open then only the first of the three terms on the right-

Kutzelnigg in ref 42, this is given by part ¢ of his eq 21.

2. Flux Operator and Reaction ProbabilityWe require an
expression for the flux operator in the adiabatic electronic basis
to calculate the reaction probability in this basis for the present
two-state problem. Since in the definition of the flux operator,
©, depends only on the reaction coordinate (hgrenly the
r-dependent part of the nuclear kinetic energy operator is of
relevance in eq 7. It can be seen from eq 17 that the nuclear
kinetic energy operator is nondiagonal and idependent part

hand side of eq 26 contributes to the reaction probability. Even
in this case, however, both terms in the diabatic analogue of eq
11 may play a role, because adiabatic and diabatic surfaces need
not coincide asymptoticall}z13 This is just the case for H-

H, to be presented below.

[ll. Computational Details
In this section we describe the calculation of reaction

probabilities by the scheme developed above. In the following

is given by : ;
we proceed with the coupled surface calculations; the uncoupled

9 2 . 9 surface calculations trivially follow from them. The time-
_ 52 P - (ar + 204 g) dependent Schdinger equation (TDSE) is solved numerically
Trad =— r 5 (22) in the diabatic electronic representation on a grid in tRe,{)
au (a;’—i— 20! @) o a;2 space using the matrix Hamiltonian in eq 1. For an explicitly
r r? time-independent Hamiltonian the solution reads

SinceT,2is nondiagonal the flux operator will have the same
property in the adiabatic electronic basis. On substituTifi§

in eq 7, one arrives at the same expression as in eq 8 for the
diagonal elementsfg and f,) of the flux operator in the

YR 1) = ex;{_i%dt]qfd(R,r,y,O) 27)

Here WYRr,y,0) is the initial wave function pertinent to the
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reactants in the diabatic electronic representationdf{&,r,y,t)
is the wave function at time
In a reactive scattering study the initial wave function is

prepared in the asymptotic reactant channel where the interaction

potential almost vanishes. In such a situation the initial wave
function pertinent to the H- H, reacting system can be written
as a product of the translational wave functiB(R) for the
motion alongR and the rovibrational wave functio®,;(r) of

the H, molecule. We locate the wave function initially on the
repulsive lower adiabatic shedt() of the DMBE PES. In the
present case fol = 0, it is given by

WHRy.0) = FRID, 1)/ 23R (cosy)(l) (28)

We choose a minimum uncertainty Gaussian wave packe
(GWP) for F(R):

1/4
|1 (R= Ry’
F(R)_(Znéz) exp[ 157 —iky(R— RO)] (29)

The quantityo is the width parameter of the GWP, aRgand
ko correspond to the location of its maximum in the coordinate
and momentum space, respectively. The functidpér) along
with the normalized Legendre polynomialg(€osy)) represents
the rovibrational eigenfunction corresponding ta/g)(state of
the H, molecule. The functionb,j(r) are obtained by solving
the eigenvalue equation of the free Holecule:
K & G+ )
2 g2 2u'r'?

Herey' is the reduced mass of the Fholecule ¢, the energy
eigenvaluey’ = r (u/u')Y2 the unscaled internuclear distance,
and V(r') is the potential energy of the Hnolecule obtained
from the DMBE PES by settingR — «. We used the sine-
DVR approach of Colbert and Millét to solve the above
eigenvalue equation.

The initial wave function defined in eq 28 is transformed to
the diabatic representation by using 8matrix (eq 4) prior to
its propagation. In the diabatic representation the initial wave
function can be written in the vector notation as

V) + @ (1) = €@, () (30)

R0 =y Rer O+ v R0 1

where (%) and ((1)) indicate the first and the second diabatic

electronic state with enerdyi1 andU,,, respectively. Note that
these are different from the one introduced in eq@8. and

9 are the nuclear wave functions in the respective electronic
states depending on the set of Jacobi coordinates. To follow

J. Phys. Chem. A, Vol. 105, No. 11, 2004325

HamiltonianH €' can be decomposed into

U, 0 01
el __ 11
A (0 Uzz)Jr U12(1 0)

Since the diagonal and the off-diagonal partd-b# do not
commute with each other, the propagator containing it in eq 32
is further written as

(33)

g iH eIAt2h _
. U 0 At/4h » 01 AtI2h . U 0 At/4h
if 11 iUz i —11
© (0 Uzz) © (1 0) © (0 Uzz) (34)

The exponent containing the off-diagonal matrix elements is

t now expressed in terms of the>x2 2 Pauli matrix

o U 0 1)avan _
10
cosU,,At/2h) —i sin(U,,At/2h)
—i sin U,At/2R) cosU,,At/2h)

Equation 32 is used in conjunction with the fast Fourier
transform methot? to evaluate the action of the exponential
containing the radial kinetic energy operator and the discrete
variable representation metHdo evaluate the exponential
containing the rotational kinetic energy operatid() on the
wave function. The coordinate grid consists of equally spaced
pointsR andr, along the Jacobi distancBsandr, respectively.
The grid along the Jacobi angjeis chosen as the nodes of a
n-point Gauss-Legendre quadrature (GL®) The initial adia-
batic wave function at each nod® ¢m,yn) of this grid is given

by

) (35)

YR,V 0) =

VHER®, 1)/ A 5 R cosy(3) @8)

wherew, is the weight of the GLQ associated with the grid
point n.

In dynamical studies involving scattering systems, as the WP
moves forward in time, its fast moving components approach
the grid boundaries and are no longer relevant for the rest of
the dynamic#? Therefore, to avoid unphysical reflections or
wrap arounds of these components from the boundaries of a
finite sized grid, the WP at each time step is multiplied by a
damping functiof#

J'[( mask+ AXmask i)
AX

2]+1

f(X) = X=X o (37)

mask
mask

the nuclear dynamics the TDSE (eq 27) is solved with the above which is activated outside the dividing lineg(> 0) in the

initial diabatic wave function. The exponential time evolution
operator in eq 27 is evaluated by dividing the time axis Nto
segments of lengtiAt. The exponential operator at each time
step is then approximated by the split-operator mettod,

eXp[—iH dAt] _exp[ iH e'At] exp[ —ij?At ]
A B 41k
i 2 el
exp[ |T(R,r)At1][—2I$t]eXF{—|H At] T Ol(AYY

(32)

whereT(Rr) = (Pr? + P;?)/2u is the total radial kinetic energy
operator.1 represents the Z 2 unit matrix. The electronic

product channel and also in the asymptotic reactant channel.
Xmask IS the point at which the damping function is initiated,
and AXmask (=Xmax — Xmas iS the width ofX over which the
function decays from 1 to 0, withmax being the maximum value

of X in that direction, in a particular channel. The properties of
the initial WP and the grid parameters used for the numerical
calculations are listed in Table 1.

The time dependence of the adiabatic electronic populations
can be calculated either by using tBematrix (eq 4) or by
defining suitable adiabatic projection operators. Bwmatrix
is a double-valued function of the coordinates and possesses a
branch point at the conical intersection. This problem is
circumvented by using adiabatic projectors in the diabatic
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TABLE 1: Numerical Grid Parameters and Properties of
the Initial Wave function Used in the Calculations of
Reaction Probabilities

param value description

Nr/N/N, 128/64/48 no. of grid points

Rmin/Rmax(80)  0.10/15.34 extension of the grid aloRg

I min/T max (80) 0.50/8.06 extension of the grid along

AR=Ar (ag) 0.12 grid spacings along R and

r (20) 4.1 location of the dividing surface in the
product channel

Rmasdrmask(80) 11.74/4.70 starting point of the masking function

Ro (a0) 10.5 initial location of the center of the GWP
in the coordinate space

Ko (au) 12.48 initial location of the center of the GWP
in the momentum space

0 (a0) 0.16 initial width param of the GWP

At (fs) 0.1347 length of the time step used in the WP
propagation

T (fs) 413.76 tot. propagation time

electronic representatié®

ad __ 10 U
ot %)
_1_ 1 (—A Ulz)
2 A%+ U, YAV A
po=1-p™ (38)

where F refers to the lower and the upper adiabatic sheet,
respectively.A is half of the energy gap between the two

diabatic surfaces. The expectation values of the above projectors

define the electronic populations in the respective electronic
states.
IV. Results and Discussion

In this section we apply the general formalism of section Il
probabilities of (R1). The reaction probabilities are calculated

across a dividing surface located rRt= 4.1a; at an energy
interval of 9 x 1073 eV. The convergence of the results is

Mahapatra et al.

o
©
T

Reaction Probability
o
'S

o
=)

2.0 3.0
EleV]

Figure 1. Total reaction probability as a function of the total energy
E (H, H. translationaH- H; rovibrational) for the HH+ Hx(v = 0, ] =

0) — Hx(Z¢, 5j') + H exchange reaction on the DMBE PES in three-
dimensions and for total angular momentdns 0. The energyE is
measured from the minimum of the;idotential. The coupled-surface
results (obtained by analyzing the reactive flux in the adiabatic
electronic picture, eq 26) are shown by the solid line. The uncoupled
surface results with and without the diagonal BH correction are shown
by the long- and short-dashed lines, respectively. The energy distribution
of the initial translational GWP is shown in the inset.

o
(=)

1.0 5.0

1.0 T T T .

Reaction Probability
o
o

E[eV]
Figure 2. Same as in Figure 1, obtained by analyzing the reactive
to calculate the initial state-specific and energy resolved reaction flux in the diabatic electronic picture, eq 11. The reaction probability

curves obtained on the diabatic electronic statesandU,; are shown

by the short- and long-dashed lines, respectively. The sum of the two

diabatic probabilities is superimposed on the adiabatic coupled-surface
results (solid line) of Figure 1 on a coarse energy grid and is indicated

checked with respect to the numerical grid parameters given in by crosses.

Table 1.

The total reaction probability (summed over all open vibra-
tional (¢') and rotational j() states of the productat a given
energy) of (R1), for reactantHv = 0, = 0) as a function of
the total energyE is plotted in Figure 1. The coupled-surface
results are shown by the solid line. The uncoupled (lower
adiabatic) surface results without and with the diagonal cor-

increases only slightly. The minimum of the seam of conical
intersections of Kloccurs at~2.74 eV16 Therefore, the coupled-
surface results are expected to differ more from the uncoupled
ones beyond this energy. However, it can be seen from Figure
1 that the impact of the conical intersection on thg:H= 0, |

= 0) reaction probabilities is negligibly small. The small

rection are shown by the short- and long-dashed lines, respec-deviations become even smaller when including the diagonal
tively. The initial WP is prepared on the lower adiabatic sheet correction.

as is the case in all previous studies of this system. The energy The same reaction probability calculated in the diabatic
distribution of the initial translational GWP is shown in the inset. electronic picture through eq 11 is shown in Figure 2. The
It can be seen that the translational components of the initial probability values shown by the short- and long-dashed lines
WP cover a broad range of energies from the onset of the are obtained by analyzing the reactive flux on the two
reaction threshold & = 0.55 eV to the three-body dissociation component diabatic electronic statdg and U, respectively

limit at E = 4.74 eV. Therefore, the reaction probabilities in (represented by the first and the second term of eq 11). The
that range of energies can be reliably obtained with this WP. sum of these two components is indicated by the crosses and is
The coupled-surface results are obtained by analyzing thesuperimposed on the coupled surface results (solid line) of
reactive flux in the adiabatic picture through eq 26. We find Figure 1, obtained in the adiabatic electronic picture from the
that only the first term of eq 26 contributes to the reaction first term of eq 26. For clarity of presentation we show the
probability, which is further discussed below. The resonance crosses on a coarse grid of energy values. It is clear from Figure
structures and their energetic locations are same in the coupled® that the second and the third terms of eq 26 do not contribute
and uncoupled surface results. The difference between theto the reaction probability of H Hx(v = 0, = 0) in the energy
coupled and uncoupled surface (without the diagonal correction) range of the present investigations. This is because on the upper
results is 2-3% at low energies. At high energies this difference adiabatic surface product,Hs asymptotically prepared in its
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Figure 3. Electronic population dynamics for the HHx(v =0, = tfs]

0) — Hx(Zv', £ ") + H exchange reaction. The populations of the two
component diabatic electronic statds; and U,, are shown by the
dashed and solid lines, respectively. Because of the damping function
activated at the grid edge, the above populations approach to zero alg
longer times. The population of the upper adiabatic electronic state
(V4) is shown in the inset.

Figure 4. Same as in Figure 1, for H Hy(v, j = 0) — Ha(Z/, &)

+ H reaction. Reaction probabilities for= 1 andv = 2 are shown in
anels a and b, respectively. The solid and the dashed lines in each
anel indicate the adiabatic coupled-surface and uncoupled- (without
the diagonal correction) surface results, respectively. The results
obtained in the diabatic electronic picture are shown by the dashed

. . . lines in each panel. In the right-hand side of each panel the corre-
3 ~ 16
2, state which has its minimum &~ 4.74 eV;® at the onset sponding electronic population of the upper adiabatic electronic state

of the three-body dissociation. Therefore, in the present js shown as a function of the propagation time.

investigations this channel remains energetically closed and does

not contribute to the reaction probability. This is numerically geometry:® Apparently also for higher energies a major part
checked further from the reaction probabilities obtained from of the reactive flux is directed via the low-energy transition state
the second term of eq 26. They are all zero until the fourth conformation. A similar numerical observation has been made
decimal place which shows that the second and the third termsearlier in a bound-state calculation of electronically excited states
are zero individually, not just their sum. Despite a difference of S0,.50

in the magnitude of the reaction probabilities, the two component  In Figure 4 we show the reaction probabilities obtained with
diabatic probability curves exhibit similar resonance structures. the vibrationally excited reactant (a4 = 1, = 0) and (b)

To better understand the similarity between the coupled and Hy(v = 2,j = 0). The coupled and the uncoupled (without the
the uncoupled surface results we show the time evolution of diagonal correction) surface results are shown in each panel by
the electronic populations in Figure 3. The initial WP corre- the full and the dashed lines, respectively. The coupled-surface
sponds to Kz = 0, ] = 0) and is again prepared in the results are obtained by analyzing the reactive flux in the
asymptotic reactant channel of the lower adiabatic sheet. (It is adiabatic electronic picture. The probability curves obtained by
transformed to the diabatic representation usingShmatrix using the diabatic electronic basis are also included in the figures
of eq 4 prior to propagation). As can be seen from Figure 3, and are shown by the detashed lines. Again, the sum of the
we obtain a 0.71/0.29 population of the two component diabatic reaction probabilities obtained in the diabatic picture equals
electronic states (shown by the dashed and solid lindsFrd. those obtained in the adiabatic picture. For the coupled surface
Therefore, the diabatic potentials do not approach the asymptoticresults of the adiabatic picture only contributions from the first
adiabatic states of H H; but represent a mixture of them. A term of eq 26 are shown; the contributions from the second
similar kind of behavior of the diabatic electronic states has and third terms are found to be almost zero. In the right-hand
been found, e.g., for the ozoeand hydrogen disulfide  side of each panel the corresponding electronic populations of
molecules:3 This may be a surprising feature of the diabatization the upper adiabatic sheet are plotted as a function of the
procedure but, in practice, is often unavoidable. However, since propagation time. As in case ohbtd = 0, = 0), the difference
the adiabatic states are well separated asymptotically, preparingoetween the coupled and the uncoupled-surface results for
an initial WP on the adiabatic electronic state and propagating vibrationally excited His very small. The resonance structures
it in the diabatic electronic representation and finally transform- and their energetic locations are also the same in the coupled
ing it back to the adiabatic states before analysis is expected toand the uncoupled surface results. A closer inspection of the
have only little relevance of this “artifact” on the dynamics. electronic populations in Figure 4 reveals that for vibrationally
The coincidence of the reaction probabilities obtained in the excited H a larger fraction of the WP traverses to the upper
diabatic and the adiabatic picture (see Figure 2) also adds anadiabatic sheet during the reaction. For instane&% and
evidence to this remark. The population of the upper adiabatic ~1.6% of the WP traverse to the upper cone during the reaction
electronic state is shown in the inset of Figure 3. The population for v = 1 and v = 2, respectively. Also, the population
of this state reaches a maximum value~g8.25 x 1073 after maximum occurs at a slightly later propagation time on
~15 fs. Therefore, only~0.625% of the WP traverses to the vibrational excitation.
upper adiabatic cone during the course of the entire dynamics. To assess the accuracy of the DMBE PES, which relies on
This can hardly have any major impact on the dynamics. The the analytic continuation approach for the upper adiabatic sheet,
minimum energy path for the H H; reactive scattering process additional ab initio calculations were performed. They aim to
occurs at the collinear arrangement of the three nuclei which is globally represent both the adiabatic sheets of the ground
far away from the seam of conical intersections, occurring at electronic manifold of H and the associated nonadiabatic
the D3n arrangements of the three nuclei. The classical barrier coupling elements between them. These calculations are similar
height of the collinear saddle point on the lower adiabatic sheet to those reported by Varandas et@in their extension of the
is ~0.42 eV, whereas the minimum of the seam of conical Liu—Siegbah#® full configuration interaction (Cl) treatment of
intersections occurs at2.74 eV at the equilateral triangular  Hs. The adiabatic wave functions and derivative couplings were
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p[ao] along ¢ (in degrees) fop = 6.0, and® = 90° and (b) along (in
_ _ _ ) degrees) forp = 6.0ap and ¢ = 30°. § = 90° corresponds to the
Figure 5. Cuts of the adiabatic potential energy surfaces gl a collinear arrangement of the three nuclei. The solid and dashed lines
function of the hyperradiup for @ = 0.1° and¢ = 20° (nearly along in each panel represent the potential energy vaMesand V.,

the seam of conical intersections occurring at 0°). The two adiabatic respectively, from the DMBE PES. The new ab initio results are
potential energy surfaces: are degenerate for this geometry. The new  superimposed on them and are indicated by the crosses.

ab initio results are shown by the solid line, and the potential energies
from the DMBE PES for the same geometry are indicated by the dashed
line. The minimum in the potential energy curve represents the
minimum of the seam of conical intersections occurring at 2.74 eV for
p = 2.5 in both cases.

also desirable and, in fact, planned by us for the near future. It
is, however, beyond the scope of the present article.

V. Summary and Outlook

determined from second-order<ivave functions based on a The reactive scattering dynamics of bimolecular collision
three electron, three orbital, active space. The molecular orbitalsprocesses occurring on a single PES is well studied in the
were determined from a complete active spastate-average |iterature. In contrast to that, only in recent years effort is made
multiconfigurational self-consistent field procedure in which two  to understand the implications of nonadiabatic interactions in a
2A' states were averaged with weights (0.505,0.495) based onreactive scattering process. We have presented here a concise
(6s3pld) contracted Gaussian basis sets on the hydrogen. Wejescription of the initial state-specific reactive scattering dynam-
show only a few cuts of these new potential energy surfaces ics on coupled electronic potential energy surfaces. We focused
for some relevant geometries of Mhich fit to the need of the  on a E x €)-JT conical intersection and a time-dependent wave
present purposes and compare them with similar cuts from the packet method as regards the nuclear dynamics. Particularly we
DMBE PES. The full presentation of our new potential energy described the analysis of the reactive flux of the WP in order
surfaces and dynamical studies on them is beyond the scope ofo calculate the initial state-specific and energy resolved total
the present paper and will be considered in a future publication. reaction probability. The initial WP is prepared on an adiabatic
In what follows we will use the principal axes of inertia electronic state and is propagated in a suitable diabatic electronic
symmetrized hyperspherical coordinates(¢)) of Kuppermann  representation. One needs to resort to the latter representation
(see egs 148153 and164 in ref 53) in discussing the properties in order to avoid the diverging (at the seam of intersections of
of the potential energy surfaces. In this coordinate system,  the potential energy surfaces) nonadiabatic coupling elements
0° corresponds to the equilateral triangular configuration@nd  appearing in the adiabatic electronic basis. The final analysis
= 90° corresponds to the collinear configuration. This choice of the reactive flux is carried out both in the adiabatic and in
is made because in our future dynamical studies we wish to the diabatic electronic representations. While the representation
explore the advantage of using the hyperspherical coordinatesof the flux operator is diagonal in the diabatic electronic basis,

for a symmetric triatomic system. it contains off-diagonal elements (arising from the off-diagonal
In Figure 5 we plot the potential energy surfaces along the kinetic coupling elements) in the adiabatic electronic basis.
hyperradiusp for fixed values of¢ = 0.1° and¢ =20°. The The above formalism is applied to calculate the state-specific

finite value of & has been chosen for technical reasons. It is and energy resolved total reaction probabilities of the-H,
small enough that (irrespective @f) the cuts of Figure 5  exchange reaction on the DMBE PES. The reaction probabilities
represents thBa, conformations, withp being 3/ (for H) times obtained in the coupled-surface calculations differ only slightly
the side length of the equilateral triangle. Note thlat= V. from those obtained from the single surface calculations. The
for these (and only these) geometries so that Figure 5 representoupled-surface results at high energies can essentially be
the potential energies along the seam of conical intersections.reproduced by the single surface calculation including the
The close similarity between the new ab initio results (full line) diagonal correction to the BO Hamiltonian. Especially, all
and the DMBE surface (dashed line) is satisfying but not quite resonance structures and their energetic locations are found to
unexpected because the analytic continuation technique shouldbe similar in both the coupled- and uncoupled-surface results.

be accurate nedDs, geometries. The sum of the reaction probabilities obtained in the diabatic
More significant are comparisons for n@, conformations representation (eq 11) equals that obtained in the adiabatic
as underlying Figure 6. In panel a we report results alpihgy picture considering only the first term of eq 26. On the upper

0 = 90° (collinear arrangement of nuclei), and in panel b are adiabatic sheet, Hs produced in itSZ, state and the energetic
results ford = 0° (Dsn) — 90° (collinear) for¢ = 30°. Despite minimum of this state occurs at the onset of the three-body
the large energetic splitting betwe¥n andV- the agreement  dissociation {4.74 eV). Therefore, in the energy range of the
between the new ab initio data and the DMBE surtads present investigations the last two terms of eq 26 do not
remarkably good. We take this as an indication that the DMBE contribute to the reaction probability. The resonance structures
surface is accurate enough so that at least the comparisorand their energetic locations are found to be similar in both the
between coupled-surface and uncoupled-surface results ofcoupled and uncoupled surface results.

Figures 4 should not be seriously affected. A numerical test ~ The minimum energy path for the reactive scattering pro-
of the accuracy of the diabatization scheme adopted is certainlycesses in H+ H, occurs at the collinear arrangement of the
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three nuclei, which is far away from the seam of conical
intersections occurring at thes, configuration. Beyond the
minimum of the seam of conical intersections occurring 274 Wiley-Interscience: New York, 1972.

eV, the noncollinear collisions might be expected to make  (19) Siegbahn, P.; Liu, B]. Chem. Physl978 68, 2466. Truhlar, D.
significant contributions in the reactive scattering dynamics. G.; Horowitz, C. J.J. Chem. Physl978 68, 2466.

However, the region of the space covered by the configuration _ (20) Boothroyd, A. I, Keogh, W. J.; Martin, P. G.; Peterson, M.JR.

of the three nuclei for which the two surfaces are nearly Chfzni')' wgs\l(g’_?,&lqllkzssgr'mann A.; Lepetit, Ehem. Phys. Let.991,

degenerate is very small and any slight deviation form these 319. wu, Y.-S. M.; Kuppermann, AChem. Phys. Lettl993 201, 178.
configurations leads to a significant energy splitting of the two Kuppermann, A.; Wu, Y.-S. MChem. Phys. Lett1993 205, 577.
surfaces. We find only a very small fraction the WP (less than Kuézngm‘g‘g:{n\(-f_- V'\\/Ilu Kypgemg?:ﬁfcpﬁ?- f&@g‘f;ﬂffgggﬁ 105.

0, H R H H ’ " ’ 9. . . .
2%) travgrsmg the upper adiabatic cone during the course of (23) Schnieder, L.; Seekamp-Rahn, K. Borkowski, J.; Wrede, E.: Welge,
the reaction. Therefore, no dramatic effects of the conical K : aoiz, F. J.; Bares, L.; D'Mello, M. J.; Herrero, V. J.:'®a Rdanos,

intersections on the reaction probability are unveiled by the V.; Wyatt, R. E.Sciencel995 269, 207. Wrede, E.; Schnieder, L.; Welge,

(17) Porter, R. N.; Stevens, R. M.; Karplus, M. Chem. Phys1968
49, 5163.

(18) Englman, RThe Jahn-Teller Effect in Molecules and Crystals

present investigations.

To assess the accuracy of the DMBE PES, we refer to new
ab initio calculations which have been carried out to globally

K. H.; Aoiz, F. J.; Basres, L.; Castillo, J. F.; Mdniez-Haya, B.; Herrero,
V. J.J. Chem. Phys1999 110, 9971.

(24) Kendrick, B. K.J. Chem. Phys200Q 112, 5679.

(25) Varandas, A. J. C.; Yu, H. G. Chem. Soc., Faraday Trank997,

represent the two adiabatic sheet of the ground electronic 93, 819.

manifold of H; and the associated nonadiabatic couplings
between them?* We find these new data compare quite well to
the DMBE PES. This confirms the accuracy of the DMBE PES.

(26) Varandas, A. J. C.; Yu, H. GChem. Phys. Lettl996 259 336.

(27) Bruckmeier, R.; Wunderlich, Ch.; Figger, Phys. Re. Lett 1994
72, 2250.

(28) Mahapatra, S.; Kapel, H.J. Chem. Phys1998 109, 1721;Phys.

The presentation of the full surfaces and the dynamical resultsRev. Lett 1998 81, 3116;Faraday Discuss1998 110, 248.

based on them and on the ensuing nonadiabatic couplings will

be considered in a future publication.

Acknowledgment. This study is supported in part by a grant
from the Deutsche Forschungsgemeinschaft. S.M. gratefully

(29) Neuhauser, D.; Baer, M. Chem. Phys1989 91, 4651. Neuhauser,
D.; Baer, M.; Judson, R. S.; Kouri, D. J. Chem. Phys199Q 93, 312;
Chem. Phys. Lettl99Q 169, 372.

(30) zZhang, D. H.; Zhang, J. Z. H. Chem. Physl1993 99, 5615;1994
100, 2697; 56311994 101, 1146; 3671.

(31) Manthe, UChem. Phys. Lettl995 241, 497.

acknowledges a research grant from the Department of Science (32) Balakrishnan, N.; Kalyanaraman, C.; SathyamurthyPhys. Rep

and Technology, New Delhi, under the young scientists scheme.
We thank David R. Yarkony for providing us with the new ab

1997 280, 79. Beck, M.; Jekle, A.; Worth, G. A.; Meyer, H.-DPhys.
Rep 200Q 324, 1. Nyman, G.; Yu, H.-GRep. Prog. Phy200Q 63, 1001.
(33) Mahapatra, S.; Sathyamurthy, N.Chem. Phys1997 107, 6621.

initio results and a careful reading of the manuscript. We also Mahapatra, SPhys. Chem. Chem. Phy200Q 2, 671.

thank Hans-Dieter Meyer for his interest in this work and a

careful reading of the manuscript.

References and Notes

(1) Teller, E.J. Phys. Chem1937, 41, 109. Herzberg, G.; Longuet-
Higgins, H. C.Discuss. Faraday Sod963 35, 77. Carrington, TDiscuss.
Faraday Soc1972 53, 27; Acc. Chem. Red974 7, 20. Davidson, E. R.
J. Am. Chem. So0d 977, 99, 397.

(2) Koppel, H.; Domcke, W.; Cederbaum, L.&dv. Chem. Physl984
57, 59.

(3) Bernardi, F.; Olivucci, M.; Robb, MChem. Soc. Re 1996 25,
321.

(4) Domcke, W.; Stock, GAdv. Chem. Phys1997 100, 1.

(5) Yarkony, D. R.Acc. Chem. Red998 31, 511.

(6) Koppel, H.; Domcke, W. InEncyclopedia of Computational
Chemistry Schleyer, P. v. R., Ed.; Wiley: New York, 1998.

(7) Chem. Phys.200Q 259 121-337 (special issue on conical
intersections).

(8) Baer, R.; Charutz, D. M.; Kosloff, R.; Baer, M. Chem. Phys
1996 105 9141.

(9) Drukker, K.; Schatz, G. CJ. Chem. Phys1999 111, 2451.

(10) Hsu, Y.-T.; Liu, K.; Pederson, L. A.; Schatz, G.I.Chem. Phys
1999 111, 7931.

(11) Whiteley, T. W.; Dobbyn, A. J.; Connor, J. N. L.; Schatz, G. C.
Phys. Chem. Chem. Phy200Q 2, 549.

(12) Flahmann, H.; et alJ. Chem. Phys1997, 107, 7296.

(13) Simah, D.; Hartke, B.; Werner, H.-J. Chem. Phys1999 111,
4523.

(14) Yarkony, D. RJ. Chem. Physin press.

(15) Lichten, W.Phys. Re. 1963 131, 229;1967, 164, 131. Smith, F.
T. Phys. Re. 1969 179 111. O'Malley, T. F.Adv. At. Mol. Phys 1971,

7, 223. For an overview of more recent work see, for example: Pacher, T.;

Cederbaum, L. S.; Kapel, H.Adv. Chem. Phys1993 84, 293.
(16) Vvarandas, A. J. C.; Brown, F. B.; Mead, C. A.; Truhlar, D. G;
Blais, N. C.J. Chem. Phys1987, 86, 6258.

(34) Tennyson, J.; Sutcliffe, B. T. Chem. Phys1982 77, 4061.

(35) Koppel, H.; Mahapatra, S.; Thiel, A. IRroceedings of the XIV
International Symposium on Electref?honon Dynamics and JahiTeller
Effect Bevilacqua, G., Martinelli, L., Terzi, N., Eds.; World Scientific:
Singapore, 1999; pp 327334.

(36) Thiel, A.; Keppel, H.J. Chem. Phys1999 110, 9371.

(37) Yarkony, D. RJ. Chem. Phys200Q 112 2111.

(38) Miller, W. H.J. Phys. Chem998 102, 793 and references therein.

(39) Park, T. J.; Light, J. CJ. Chem. Phys1988 88, 4897.

(40) Born, M.; Huang, KDynamical Theory of Crystal Lattice®xford
University Press: New York, 1954.

(41) Schw, J.; Kgppel, H.J. Chem. Phys1995 103 9292.

(42) Kutzelnigg, W.Mol. Phys 1997 90, 909.

(43) Colbert, D. T.; Miller, W. H.J. Chem. Phys1992 96, 1982.

(44) Feit, M. D.; Fleck, J. A., Jr.; Steiger, A. Comput. Phys1982
47, 412.

(45) Kosloff, D.; Kosloff, R.J. Comput. Phys1983 52, 35.

(46) Badc, Z.; Light, J. C.Annu. Re. Phys. Cheml989 40, 469. Queg,
F.; Leforestier, CJ. Chem. Phys199Q 92, 247. Corey, G. C.; Lemoine,
D. J. Chem. Physl992 97, 4115.

(47) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.
Numerical Recipes: The Art of Scientific Computi@gmbridge University
Press: Cambridge, U.K., 1986; p 125.

(48) Mahapatra, S.; Sathyamurthy, 3. Chem. Soc., Faraday Trans
1997, 93, 773.

(49) Manthe, U.; Kppel, H.J. Chem. Phys199Q 93, 345, 1658.

(50) Mtller, H.; Koppel, H.Chem. Phys1994 183 107.

(51) Silverstone, H. J.; Sinanoglu, @. Chem. Phys1996 44, 1899.

(52) Roos, B. Olnt. J. Quantum Chem. Sym98Q 14, 175. Roos, B.
O.; Taylor, P. R.; Siegbahn, P. E. i@hem. Phys198Q 48, 157. Siegbahn,
P.; Heiberg, A.; Roos, B.; Levy, BPhys. Scr198Q 21, 323.

(53) Kuppermann, A. IrDynamics of Molecules and Chemical Reac-
tions Wyatt, R. E., Zhang, J. Z. H., Eds.; Marcel Dekker: New York, 1996.

(54) Mahapatra, S.; Kapel, H.; Cederbaum, L. S.; Yarkony, D. R. To
be published.



